Distinguishing graphs with intermediate growth
نویسندگان
چکیده
منابع مشابه
Distinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملGraphs with Large Distinguishing Chromatic Number
The distinguishing chromatic number χD(G) of a graph G is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. For a graph G of order n, it is clear that 1 6 χD(G) 6 n, and it has been shown that χD(G) = n if and only if G is a complete multipartite graph. This paper characterizes the graphs G of o...
متن کاملInfinite Graphs with Finite 2-Distinguishing Cost
A graph G is said to be 2-distinguishable if there is a labeling of the vertices with two labels such that only the trivial automorphism preserves the labels. Call the minimum size of a label class in such a labeling of G the cost of 2-distinguishing G. Within the class of connected, locally finite, infinite graphs, we show that those with finite 2-distinguishing cost are precisely the graphs w...
متن کاملDistinguishing Infinite Graphs
The distinguishing number D(G) of a graph G is the least cardinal number א such that G has a labeling with א labels that is only preserved by the trivial automorphism. We show that the distinguishing number of the countable random graph is two, that tree-like graphs with not more than continuum many vertices have distinguishing number two, and determine the distinguishing number of many classes...
متن کاملDistinguishing geometric graphs
We begin the study of distinguishing geometric graphs. Let G be a geometric graph. An automorphism of the underlying graph that preserves both crossings and noncrossings is called a geometric automorphism. A labelling, f : V (G) → {1, 2, . . . , r}, is said to be rdistinguishing if no nontrivial geometric automorphism preserves the labels. The distinguishing number of G is the minimum r such th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2015
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-015-3071-5